论文标题
部分可观测时空混沌系统的无模型预测
Large spin-Hall effect in Si at room temperature
论文作者
论文摘要
硅的弱内在自旋轨道耦合和中心对称晶体结构是SI Spintronics发展的关键瓶颈,因为它们会导致微不足道的自旋壁效应(自旋电流产生)和旋转旋转壁效应(自旋电流检测)。在这里,我们承担电流,磁场,晶体学依赖性磁阻和磁铁热传输测量,以研究独立式SI薄膜中的自旋传输行为。我们在室温下观察到P-SI和N-SI的大型旋转磁磁性,它的数量级比PT大。意外的大型和有效的自旋式效果的一种解释是自旋 - 音波耦合而不是自旋轨道耦合。自旋偶联的宏观起源可能是在独立式SI膜中存在的大型应变梯度。在光,地球丰富和中心对称材料中,这种发现为应变工程的新途径开辟了一条新的道路,以实现技术高度发达的材料中的自旋依赖性。
Silicon's weak intrinsic spin-orbit coupling and centrosymmetric crystal structure are a critical bottleneck to the development of Si spintronics, because they lead to an insignificant spin-Hall effect (spin current generation) and inverse spin-Hall effect (spin current detection). Here, we undertake current, magnetic field, crystallography dependent magnetoresistance and magneto thermal transport measurements to study the spin transport behavior in freestanding Si thin films. We observe a large spin-Hall magnetoresistance in both p-Si and n-Si at room temperature and it is an order of magnitude larger than that of Pt. One explanation of the unexpectedly large and efficient spin-Hall effect is spin-phonon coupling instead of spin-orbit coupling. The macroscopic origin of the spin-phonon coupling can be large strain gradients that can exist in the freestanding Si films. This discovery in a light, earth abundant and centrosymmetric material opens a new path of strain engineering to achieve spin dependent properties in technologically highly-developed materials.