论文标题
在自动化中,我们信任:调查不确定性在主动学习系统中的作用
In Automation We Trust: Investigating the Role of Uncertainty in Active Learning Systems
论文作者
论文摘要
我们研究了不同的主动学习(AL)查询策略以及分类不确定性可视化影响分析师对自动分类系统的信任。 AL的当前标准策略是查询Oracle(例如,分析师)以优化分类器具有最高不确定性的数据点的标签。这是自动化系统的最佳策略,因为它可以产生最大信息增益。但是,以模型为中心的策略忽略了这种不确定性对系统人类组成部分的影响以及人类与系统后训练后与系统相互作用的结果。在本文中,我们提出了一项经验研究,评估了对分类透明度的AL查询策略和可视化如何影响图像数据的自动分类中的信任。我们发现,查询策略会极大地影响分析师对图像分类系统的信任,我们使用这些结果来提出一组Oracle查询策略和可视化,以在AL培训阶段使用,从而影响分析师对分类的信任。
We investigate how different active learning (AL) query policies coupled with classification uncertainty visualizations affect analyst trust in automated classification systems. A current standard policy for AL is to query the oracle (e.g., the analyst) to refine labels for datapoints where the classifier has the highest uncertainty. This is an optimal policy for the automation system as it yields maximal information gain. However, model-centric policies neglect the effects of this uncertainty on the human component of the system and the consequent manner in which the human will interact with the system post-training. In this paper, we present an empirical study evaluating how AL query policies and visualizations lending transparency to classification influence trust in automated classification of image data. We found that query policy significantly influences an analyst's trust in an image classification system, and we use these results to propose a set of oracle query policies and visualizations for use during AL training phases that can influence analyst trust in classification.