论文标题

K-HOP协作游戏模型:扩展到社区预算和自适应非统一性

A k-hop Collaborate Game Model: Extended to Community Budgets and Adaptive Non-Submodularity

论文作者

Guo, Jianxiong, Wu, Weili

论文摘要

收入最大化(RM)是在线社交网络(OSN)上最重要的问题之一,该问题试图在OSN中找到一小部分用户,从而使预期的收入最大化。它以前已经进行了深入研究。然而,大多数的文献基于非自适应播种策略和简单信息扩散模型,例如IC/LT模型。它将单一影响的用户视为量化收入的测量单元。在合作游戏模型出现之前,它将活动视为计算收入的基本对象。用户发起的活动只能影响那些距离发起者K-HOP内的用户。基于此,我们采用自适应种子策略,并在规模预算(RMSB)问题下制定收入最大化。如果考虑到产品的促销活动,我们将RMSB扩展到社区预算(RMCB)问题下的收入最大化,其中可以在整个网络上分配影响。 RMSB和RMCB的目标函数是adatpive单调的,而不是自适应的子模型,但在某些特殊情况下,它是自适应的。我们研究了在棘突下案例和一般非调节病例的RMSB和RMCB问题,并提出RMSBSolver和RMCBSolver分别以强大的理论保证解决了它们。特别是,在一般的非调节病例下,我们给出了RMSB问题的数据依赖性近似值。最后,我们通过在实际数据集上进行实验来评估我们提出的算法,并显示解决方案的有效性和准确性。

Revenue maximization (RM) is one of the most important problems on online social networks (OSNs), which attempts to find a small subset of users in OSNs that makes the expected revenue maximized. It has been researched intensively before. However, most of exsiting literatures were based on non-adaptive seeding strategy and on simple information diffusion model, such as IC/LT-model. It considered the single influenced user as a measurement unit to quantify the revenue. Until Collaborate Game model appeared, it considered activity as a basic object to compute the revenue. An activity initiated by a user can only influence those users whose distance are within k-hop from the initiator. Based on that, we adopt adaptive seed strategy and formulate the Revenue Maximization under the Size Budget (RMSB) problem. If taking into account the product's promotion, we extend RMSB to the Revenue Maximization under the Community Budget (RMCB) problem, where the influence can be distributed over the whole network. The objective function of RMSB and RMCB is adatpive monotone and not adaptive submodular, but in some special cases, it is adaptive submodular. We study the RMSB and RMCB problem under both the speical submodular cases and general non-submodular cases, and propose RMSBSolver and RMCBSolver to solve them with strong theoretical guarantees, respectively. Especially, we give a data-dependent approximation ratio for RMSB problem under the general non-submodular cases. Finally, we evaluate our proposed algorithms by conducting experiments on real datasets, and show the effectiveness and accuracy of our solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源