论文标题
符号4-manifolds承认温斯坦三角
Symplectic 4-manifolds admit Weinstein trisections
论文作者
论文摘要
我们证明,每个符号4 manifold都承认了与象征结构兼容的三角形,从某种意义上说,符号形式在三个三个扇区中诱导了温斯坦结构。一路上,我们表明,在$ \ mathbb {cp}^2 $中,(可能是单数的)符号编织表面可以符合同位素的同位素。
We prove that every symplectic 4-manifold admits a trisection that is compatible with the symplectic structure in the sense that the symplectic form induces a Weinstein structure on each of the three sectors of the trisection. Along the way, we show that a (potentially singular) symplectic braided surface in $\mathbb{CP}^2$ can be symplectically isotoped into bridge position.