论文标题

SYMBA:端到端VLBI合成数据生成管道

SYMBA: An end-to-end VLBI synthetic data generation pipeline

论文作者

Roelofs, F., Janssen, M., Natarajan, I., Deane, R., Davelaar, J., Olivares, H., Porth, O., Paine, S. N., Bouman, K. L., Tilanus, R. P. J., van Bemmel, I. M., Falcke, H., Akiyama, K., Alberdi, A., Alef, W., Asada, K., Azulay, R., Baczko, A., Ball, D., Baloković, M., Barrett, J., Bintley, D., Blackburn, L., Boland, W., Bower, G. C., Bremer, M., Brinkerink, C. D., Brissenden, R., Britzen, S., Broderick, A. E., Broguiere, D., Bronzwaer, T., Byun, D., Carlstrom, J. E., Chael, A., Chan, C., Chatterjee, S., Chatterjee, K., Chen, M., Chen, Y., Cho, I., Christian, P., Conway, J. E., Cordes, J. M., Crew, G. B., Cui, Y., De Laurentis, M., Dempsey, J., Desvignes, G., Dexter, J., Doeleman, S. S., Eatough, R. P., Fish, V. L., Fomalont, E., Fraga-Encinas, R., Friberg, P., Fromm, C. M., Gómez, J. L., Galison, P., Gammie, C. F., García, R., Gentaz, O., Georgiev, B., Goddi, C., Gold, R., Gu, M., Gurwell, M., Hada, K., Hecht, M. H., Hesper, R., Ho, L. C., Ho, P., Honma, M., Huang, C. L., Huang, L., Hughes, D. H., Ikeda, S., Inoue, M., Issaoun, S., James, D. J., Jannuzi, B. T., Jeter, B., Jiang, W., Johnson, M. D., Jorstad, S., Jung, T., Karami, M., Karuppusamy, R., Kawashima, T., Keating, G. K., Kettenis, M., Kim, J., Kim, J., Kim, J., Kino, M., Koay, J. Yi, Koch, P. M., Koyama, S., Kramer, M., Kramer, C., Krichbaum, T. P., Kuo, C., Lauer, T. R., Lee, S., Li, Y., Li, Z., Lindqvist, M., Lico, R., Liu, K., Liuzzo, E., Lo, W., Lobanov, A. P., Loinard, L., Lonsdale, C., Lu, R., MacDonald, N. R., Mao, J., Markoff, S., Marrone, D. P., Marscher, A. P., Martí-Vidal, I., Matsushita, S., Matthews, L. D., Medeiros, L., Menten, K. M., Mizuno, Y., Mizuno, I., Moran, J. M., Moriyama, K., Moscibrodzka, M., Müller, C., Nagai, H., Nagar, N. M., Nakamura, M., Narayan, R., Narayanan, G., Neri, R., Ni, C., Noutsos, A., Okino, H., Ortiz-León, G. N., Oyama, T., Özel, F., Palumbo, D. C. M., Patel, N., Pen, U., Pesce, D. W., Piétu, V., Plambeck, R., PopStefanija, A., Prather, B., Preciado-López, J. A., Psaltis, D., Pu, H., Ramakrishnan, V., Rao, R., Rawlings, M. G., Raymond, A. W., Rezzolla, L., Ripperda, B., Rogers, A., Ros, E., Rose, M., Roshanineshat, A., Rottmann, H., Roy, A. L., Ruszczyk, C., Ryan, B. R., Rygl, K. L. J., Sánchez, S., Sánchez-Arguelles, D., Sasada, M., Savolainen, T., Schloerb, F. Peter, Schuster, K., Shao, L., Shen, Z., Small, D., Sohn, B. Won, SooHoo, J., Tazaki, F., Tiede, P., Titus, M., Toma, K., Torne, P., Trent, T., Trippe, S., Tsuda, S., van Langevelde, H. J., van Rossum, D. R., Wagner, J., Wardle, J., Ward-Thompson, D., Weintroub, J., Wex, N., Wharton, R., Wielgus, M., Wong, G. N., Wu, Q., Young, A., Young, K., Younsi, Z., Yuan, F., Yuan, Y., Zensus, J. A., Zhao, G., Zhao, S., Zhu, Z.

论文摘要

理论源模型的现实合成观察对于我们对实际观察数据的理解至关重要。在使用合成数据时,可以验证可以恢复源参数的程度,并评估如何校准各种数据损坏效应。在提出新来源的观察,在与观察数据比较中验证基于模型的理论预测时,这些研究很重要。我们介绍了长基线阵列(SYMBA)的合成测量创建者,这是一种新型的合成数据生成管道,用于长期基线干涉法(VLBI)观测值。 Symba考虑了几种现实的大气,工具和校准效应。我们使用SYMBA为事件地平线望远镜(EHT)创建合成观测,该观察是MM VLBI阵列,该阵列最近捕获了黑洞阴影的第一个图像。在使用简单的来源和腐败模型测试Symba之后,我们研究了包括所有腐败和校准效应的重要性。根据M87的两个示例一般相对论磁性水力学(GRMHD)模型图像,我们进行了案例研究,以评估具有不同天气条件的当前和未来EHT阵列的可达到的图像质量。结果表明,大气和工具腐败对所测量可见性的影响很大。尽管有这些效果,但我们证明了在执行校准步骤后如何恢复输入模型的整体结构。通过计划在EHT阵列中增加新站,可以通过更高的角度分辨率和动态范围重建图像。在我们的案例研究中,这些改进允许基于重建图像中的显着特征的热和非热的GRMHD模型进行区分。

Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a comparison with observational data. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a mm VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects. Based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M87, we performed case studies to assess the attainable image quality with the current and future EHT array for different weather conditions. The results show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of the input models can be recovered robustly after performing calibration steps. With the planned addition of new stations to the EHT array, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源