论文标题

神经I-向量

Neural i-vectors

论文作者

Vestman, Ville, Lee, Kong Aik, Kinnunen, Tomi H.

论文摘要

在最近的演讲者验证评估中,已经证明了深扬声器的嵌入量优于其生成的I-Vectors。为了结合高性能和生成解释的益处,我们研究了深层嵌入提取器和I-vector提取器的使用。为了将深入嵌入提取器与I-vector提取器捆绑在一起,我们采用受高斯混合模型(GMM)启发的聚合层到嵌入式提取器网络中。包含GMM的层,可以将经过歧视的训练的网络用作I-矢量提取器足够统计的提供商,以提取我们所谓的神经I-Vector。我们将深层嵌入与野外演讲者(SITW)和说话者识别评估(SRE)2018和2019年数据集的拟议的神经I-向量进行比较。在SITW的核心核心条件下,我们的深层嵌入获得了与最先进的性能比较。神经I-向量的性能比深嵌入的性能差约50%,但另一方面,在文献中先前的I-vector方法胜过明确的I-vector方法。

Deep speaker embeddings have been demonstrated to outperform their generative counterparts, i-vectors, in recent speaker verification evaluations. To combine the benefits of high performance and generative interpretation, we investigate the use of deep embedding extractor and i-vector extractor in succession. To bundle the deep embedding extractor with an i-vector extractor, we adopt aggregation layers inspired by the Gaussian mixture model (GMM) to the embedding extractor networks. The inclusion of GMM-like layer allows the discriminatively trained network to be used as a provider of sufficient statistics for the i-vector extractor to extract what we call neural i-vectors. We compare the deep embeddings to the proposed neural i-vectors on the Speakers in the Wild (SITW) and the Speaker Recognition Evaluation (SRE) 2018 and 2019 datasets. On the core-core condition of SITW, our deep embeddings obtain performance comparative to the state-of-the-art. The neural i-vectors obtain about 50% worse performance than the deep embeddings, but on the other hand outperform the previous i-vector approaches reported in the literature by a clear margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源