论文标题
使用最大熵基函数的随机微分方程的数据驱动解决方案
Data-driven Solution of Stochastic Differential Equations Using Maximum Entropy Basis Functions
论文作者
论文摘要
在本文中,我们提出了一种数据驱动的不确定性传播方法。特别是,我们考虑具有参数不确定性的随机微分方程。使用类似于多项式混乱膨胀的最大熵(最大)基础函数近似微分方程的解。最大基础函数是通过最大化信息理论熵从可用数据得出的,因此,无需事先指定基础函数。我们将提出的基于最大的方法与现有方法进行比较。
In this paper we present a data-driven approach for uncertainty propagation. In particular, we consider stochastic differential equations with parametric uncertainty. Solution of the differential equation is approximated using maximum entropy (maxent) basis functions similar to polynomial chaos expansions. Maxent basis functions are derived from available data by maximization of information-theoretic entropy, therefore, there is no need to specify basis functions beforehand. We compare the proposed maxent based approach with existing methods.