论文标题

多源土地覆盖映射的细颗粒分类

Fine grained classification for multi-source land cover mapping

论文作者

Gbodjo, Yawogan Jean Eudes, Ienco, Dino, Leroux, Louise, Interdonato, Roberto, Gaetano, Raffaelle

论文摘要

如今,有一个普遍的共识,即需要更好地表征农业监测系统以应对全球变化。及时,准确的土地使用/土地覆盖映射可以通过以细节提供有用的信息来支持这一愿景。在这里,提出了一种深度学习方法来处理对象级别的多源土地覆盖地图。该方法基于通过专门针对多时间数据上下文的注意机制丰富的复发神经网络的扩展。此外,引入了一种新的分层预审进策略,旨在利用土地覆盖类别内的分层关系中可用的特定领域知识。与遥感标准方法相比,在法国海外部门的团圆岛(法国海外部门)进行的实验表明了该提案的重要性。

Nowadays, there is a general agreement on the need to better characterize agricultural monitoring systems in response to the global changes. Timely and accurate land use/land cover mapping can support this vision by providing useful information at fine scale. Here, a deep learning approach is proposed to deal with multi-source land cover mapping at object level. The approach is based on an extension of Recurrent Neural Network enriched via an attention mechanism dedicated to multi-temporal data context. Moreover, a new hierarchical pretraining strategy designed to exploit specific domain knowledge available under hierarchical relationships within land cover classes is introduced. Experiments carried out on the Reunion island - a french overseas department - demonstrate the significance of the proposal compared to remote sensing standard approaches for land cover mapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源