论文标题
在三维空间中,核心偏转超新星的反弹后阶段的模拟,并具有全玻尔兹曼中微子运输
Simulations of the Early Post-Bounce Phase of Core-Collapse Supernovae in Three-Dimensional Space with Full Boltzmann Neutrino Transport
论文作者
论文摘要
我们使用辐射流体动力学代码和完整的Boltzmann Neutrino Transpers进行了三维空间中的11.2 m祖细胞模型的核心溢出超新星模拟。我们为三种中微子物种和具有Furusawa和Togashi的状态核方程的三维压缩欧拉方程解决了三维玻尔兹曼方程。我们专注于反弹后10毫秒的迅速对流,并研究中微子如何在对流问题中运输。我们基于Eddington Tensor的特征值和特征向量进行了新的分析,并在光学厚度和薄极限之间的过渡方案中进行了玻尔兹曼传输结果与M1闭合近似之间进行比较。我们使用椭圆形可视化特征值和特征向量,其中每个主轴平行于一个特征向量,并且与相应的特征值成正比。这种方法使我们能够理解直接从Boltzmann模拟中得出的Eddington Tensor与M1处方从新角度提供的差异。我们发现,椭圆形的最长主轴几乎总是几乎与M1闭合近似中的能通量平行,而在Boltzmann仿真中,在某些过渡区域中,平均自由路径为0.1倍半径的偏移区域。在三个空间维度中,对流动作使难以预测发生这种情况的位置并可能改善那里的闭合关系。
We report on the core-collapse supernova simulation we conducted for a 11.2 M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at 10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is 0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.