论文标题

自propelled颗粒模型中的流体动力学,超流体和巨大数量波动

Hydrodynamics, superfluidity and giant number fluctuations in a model of self-propelled particles

论文作者

Chakraborty, Tanmoy, Chakraborti, Subhadip, Das, Arghya, Pradhan, Punyabrata

论文摘要

我们得出了具有可变范围跳跃的原型一维模型的流体动力学,该模拟了活性或自发性颗粒的被动扩散和弹道运动。该模型有两种主要成分 - 顽固的交互作用和短距离跳跃的竞争机制。我们计算了两个密度依赖性的传输系数 - 散装扩散系数和电导率,尽管违反详细平衡的比率与爱因斯坦关系的数量波动有关。在无限范围跳跃的极限下,该模型在调整密度$ρ$(或活动)时展示了从有限传导的状态到无限执行的“超氟”过渡,其特征是电导率$χ(ρ)\ sim(ρ_C)^{ - 1} $ with $ρ_c$ privation privation $ c(ρ_C)^$ρ_C$ρ_C$ρ_c$ρ_C$ρ_c$分化的电导率大大增加了粒子(或空位)的迁移率,并引起系统中的“巨型”数量波动。

We derive hydrodynamics of a prototypical one dimensional model, having variable-range hopping, which mimics passive diffusion and ballistic motion of active, or self-propelled, particles. The model has two main ingredients - the hardcore interaction and the competing mechanisms of short and long range hopping. We calculate two density-dependent transport coefficients - the bulk-diffusion coefficient and the conductivity, the ratio of which, despite violation of detailed balance, is connected to number fluctuation by an Einstein relation. In the limit of infinite range hopping, the model exhibits, upon tuning density $ρ$ (or activity), a "superfluid" transition from a finitely conducting state to an infinitely conducting one, characterized by a divergence in conductivity $χ(ρ) \sim (ρ-ρ_c)^{-1}$ with $ρ_c$ being the critical density. The diverging conductivity greatly increases particle (or vacancy) mobility and induces "giant" number fluctuations in the system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源