论文标题

具有多旋转相互作用的广义2D ISING模型的疾病解决方案

Disorder solutions for generalized 2D Ising Model with multi-spin interaction

论文作者

Khrapov, Pavel

论文摘要

在外部磁场中的广义2D ISING模型中,与最近邻居的相互作用,下一个最近的邻居,各种三重相互作用以及四倍相互作用的相互作用依靠七个参数,在某些精确无序的解决方案上得出了在热力学极限中每个晶格位点找到自由能的公式。考虑晶格模型的边界条件,其偏移(类似于螺旋形),并且在自然排序中所有点的循环闭合。构建具有非负矩阵元素的基本传输矩阵。在一组疾病溶液中,转移矩阵的最大特征值对于考虑平面晶格的各种大小都是恒定的,尤其是在热力学极限下。热力学极限中每个晶格位点的自由能通过传递矩阵的最大特征值的自然对数表示。对于具有正成分的特殊形式的特征向量,可以找到最大的特征值。数值示例表明了所得方程系统的非平凡解。对于具有哈密致力的2D广义模型,方程式和热力学极限中的自由能的价值将保持不变,在自然订购中,自然订购的任何其他两个lattice点的旋转值替换了两个(四个)相邻的最大旋转的值(四个)相邻最大旋转的值,这是显着扩展了该模型的无效求解的。特征向量分量的高度对称性和电感构造超出了获得的精确溶液集的框架时消失,这是在这套无序解决方案附近寻找相变的机会。

For generalized 2D Ising model in an external magnetic field with the interaction of nearest neighbors, next nearest neighbors, all kinds of triple interactions and the quadruple interaction the formulas for finding free energy per lattice site in the thermodynamic limit were derived on a certain set of exact disordered solutions depending on seven parameters. Lattice models are considered with boundary conditions with a shift (similar to helical ones), and with cyclic closure of the set of all points in natural ordering. The elementary transfer matrix with nonnegative matrix elements are constructed. On the set of disorder solutions the largest eigenvalue of the transfer matrix is constant for every size of considering planar lattice, and, in particular, in the thermodynamic limit. Free energy per lattice site in the thermodynamic limit is expressed through the natural logarithm of the largest eigenvalue of transfer matrix. This largest eigenvalue can be found for a special form of eigenvector with positive components. The numerical example show the existence of nontrivial solutions of the resulting systems of equations. The system of equations and the value of free energy in the thermodynamic limit will remain the same for 2D generalized Ising models with Hamiltonians, in which the values of two (out of four) neighboring maximal spins in the natural ordering are replaced by the values of the spins at any other two lattice points adjacent in the natural ordering, this significantly expands the set of models having disordered exact solutions. The high degree of symmetry and inductive construction of the components of the eigenvectors, which disappear when going beyond the framework of the obtained set of exact solutions, is an occasion to search for phase transitions in the vicinity of this set of disordered solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源