论文标题
在鲍姆斯拉格 - solarag群体上的有限类型的薄弱和强烈的基础缩影
Weakly and Strongly Aperiodic Subshifts of Finite Type on Baumslag-Solitar Groups
论文作者
论文摘要
我们研究了Baumslag-solitar群体上有限类型(SFT)的子迁移的周期性。我们表明,对于残留有限的Baumslag-solitar群体,存在强烈和弱但却不巧妙的大型SFT。特别是,这表明与$ \ mathbb {z}^2 $不同,但是像$ \ mathbb {z}^3 $一样,强度和弱的aperiodic sfts在残留有限的BS组中是不同类别的SFT。更准确地说,我们证明,由于Aubrun和Kari,BS(M,N)上的弱上性sft弱,实际上在BS上是强烈的Aperiodic(1,n)。在任何其他BS(M,N)上,弱但不强烈的上毒。此外,我们表现出一个弱但不强烈的BS(1,n)的SFT;我们表明,在BS(n,n)上存在强烈的基础SFT。
We study the periodicity of subshifts of finite type (SFT) on Baumslag-Solitar groups. We show that for residually finite Baumslag-Solitar groups there exist both strongly and weakly-but-not-strongly aperiodic SFTs. In particular, this shows that unlike $\mathbb{Z}^2$, but like $\mathbb{Z}^3$, strong and weak aperiodic SFTs are different classes of SFTs in residually finite BS groups. More precisely, we prove that a weakly aperiodic SFT on BS(m,n) due to Aubrun and Kari is, in fact, strongly aperiodic on BS(1,n); and weakly but not strongly aperiodic on any other BS(m,n). In addition, we exhibit an SFT which is weakly but not strongly aperiodic on BS(1,n); and we show that there exists a strongly aperiodic SFT on BS(n,n).