论文标题
高度分类完全标记的3D体积生物医学图像和无监督的域的适应性训练的分割网络的语义分割,以分割另一个完全未标记的生物医学3D图像堆栈
Semantic Segmentation of highly class imbalanced fully labelled 3D volumetric biomedical images and unsupervised Domain Adaptation of the pre-trained Segmentation Network to segment another fully unlabelled Biomedical 3D Image stack
论文作者
论文摘要
我们工作的目的是对3D生物医学体积数据进行像素标签语义分割。对于大型生物医学数据集而言,手动注释总是很难。因此,我们考虑了两个数据集完全标记并假定另一个数据集完全未标记的情况。我们首先对完全标记的各向同性生物医学源数据(FIBSEM)执行语义分割,并尝试合并经过训练的模型,用于分割目标未标记的数据集(SNEMI3D),该模型在不同类型的细胞体和其他细胞组件的上下文中与源数据集具有某些相似之处。虽然,细胞成分的大小和形状各不相同。因此,在本文中,我们在无监督域适应的背景下提出了一种新颖的方法,同时将目标体积数据的每个像素分类为细胞边界和细胞体。同样,我们提出了一种新型方法,可以在训练图像中对不同像素的不均匀权重,同时在存在相应的像素标签图的情况下执行像素级的语义分割以及源域中的训练原始图像。我们使用了从给定的地面真实标签图中检索到的熵图或距离转换矩阵,该矩阵有助于克服医疗图像数据中的类不平衡问题,在医学图像数据中,细胞边界非常薄,因此非常容易被错误分类为非结合。
The goal of our work is to perform pixel label semantic segmentation on 3D biomedical volumetric data. Manual annotation is always difficult for a large bio-medical dataset. So, we consider two cases where one dataset is fully labeled and the other dataset is assumed to be fully unlabelled. We first perform Semantic Segmentation on the fully labeled isotropic biomedical source data (FIBSEM) and try to incorporate the the trained model for segmenting the target unlabelled dataset(SNEMI3D)which shares some similarities with the source dataset in the context of different types of cellular bodies and other cellular components. Although, the cellular components vary in size and shape. So in this paper, we have proposed a novel approach in the context of unsupervised domain adaptation while classifying each pixel of the target volumetric data into cell boundary and cell body. Also, we have proposed a novel approach to giving non-uniform weights to different pixels in the training images while performing the pixel-level semantic segmentation in the presence of the corresponding pixel-wise label map along with the training original images in the source domain. We have used the Entropy Map or a Distance Transform matrix retrieved from the given ground truth label map which has helped to overcome the class imbalance problem in the medical image data where the cell boundaries are extremely thin and hence, extremely prone to be misclassified as non-boundary.