论文标题

PESTRE:一个完全注释的数据集,用于从空中设备中进行行人检测,跟踪,重新识别和搜索

The P-DESTRE: A Fully Annotated Dataset for Pedestrian Detection, Tracking, Re-Identification and Search from Aerial Devices

论文作者

Kumar, S. V. Aruna, Yaghoubi, Ehsan, Das, Abhijit, Harish, B. S., Proença, Hugo

论文摘要

在过去的几十年中,世界一直在目睹城市空间中的安全威胁日益增长的威胁,这增加了能够检测,跟踪和识别人群中感兴趣的人的视觉监视解决方案的相关性。特别是,无人驾驶汽车(UAV)是这种分析的潜在工具,因为它们为数据收集提供了便宜的方式,涵盖了大型且难以到达的区域,同时减少了人类员工的需求。在这种情况下,所有可用的数据集仅适用于行人的重新识别问题,其中每天都会获取每个ID的多相机视图,并允许将服装外观功能用于识别目的。因此,本文的主要贡献是两个方面:1)我们宣布基于无人机的Pestre数据集,这是第一个在多天内提供一致的ID注释,使其适合于非常具有挑战性的人搜索问题,即没有衣服信息可相当使用。除此功能外,Pestre注释可以研究基于无人机的行人检测,跟踪,重新识别和软生物识别溶液; 2)我们将最先进的行人检测,跟踪,重新识别和搜索技术与众所周知的监视数据集中的最新探测,跟踪,重新识别和搜索技术相比,与PESTRE数据中相同技术获得的有效性。这种比较使得为每个任务确定基于无人机数据的最有问题的数据降解因子,并且可以用作这种技术后来进步的基准。在http://p-destre.di.ubi.pt/上免费获得了进行经验评估的数据集和全部详细信息。

Over the last decades, the world has been witnessing growing threats to the security in urban spaces, which has augmented the relevance given to visual surveillance solutions able to detect, track and identify persons of interest in crowds. In particular, unmanned aerial vehicles (UAVs) are a potential tool for this kind of analysis, as they provide a cheap way for data collection, cover large and difficult-to-reach areas, while reducing human staff demands. In this context, all the available datasets are exclusively suitable for the pedestrian re-identification problem, in which the multi-camera views per ID are taken on a single day, and allows the use of clothing appearance features for identification purposes. Accordingly, the main contributions of this paper are two-fold: 1) we announce the UAV-based P-DESTRE dataset, which is the first of its kind to provide consistent ID annotations across multiple days, making it suitable for the extremely challenging problem of person search, i.e., where no clothing information can be reliably used. Apart this feature, the P-DESTRE annotations enable the research on UAV-based pedestrian detection, tracking, re-identification and soft biometric solutions; and 2) we compare the results attained by state-of-the-art pedestrian detection, tracking, reidentification and search techniques in well-known surveillance datasets, to the effectiveness obtained by the same techniques in the P-DESTRE data. Such comparison enables to identify the most problematic data degradation factors of UAV-based data for each task, and can be used as baselines for subsequent advances in this kind of technology. The dataset and the full details of the empirical evaluation carried out are freely available at http://p-destre.di.ubi.pt/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源