论文标题

2D Van der Waals异质结构的有效计算设计:带式分配,晶格 - 匹配,Web-App生成和机器学习

Efficient Computational Design of 2D van der Waals Heterostructures: Band-Alignment, Lattice-Mismatch, Web-app Generation and Machine-learning

论文作者

Choudhary, Kamal, Garrity, Kevin F, Hartman, Steven T., Pilania, Ghanshyam, Tavazza, Francesca

论文摘要

我们开发了一个计算数据库,Web应用程序和机器学习模型(ML)模型,以加速二维(2D) - 系统结构的设计和发现。使用基于密度函数理论(DFT)的晶格参数和674个非金属剥落的2D材料的电子带源,我们生成226,779个可能的异质结构。我们根据安德森(Andersons)规则将这些异质结构分类为I型,II和III系统,该系统基于非相互作用单层的相对带对象。我们发现II型是最常见的,III型是最不常见的异质结构类型。随后,我们根据元素元素的周期表分析了每种异质结构类型的化学趋势。频带比对数据也可用于识别接触的光催化剂和高作用函数2D-METALS。我们通过将结果与实验数据以及混合功能预测进行比较来验证我们的结果。此外,我们进行了一些选定的系统(MOS2/WSE2,MOS2/H-BN,MOSE2/CRI3)的DFT计算,以将带对象的描述与Andersons规则的预测进行比较。我们开发Web应用程序,以使用户能够实际创建2D材料的组合并预测其属性。此外,我们使用ML工具来预测2D材料的频段分配信息。 Web应用程序,工具和关联数据将通过JARVIS-HETEROSTRUCTURE网站(https://jarvis.nist.gov/jarvish/)分发。我们的分析,结果和开发的Web应用程序可以应用于筛选和设计应用程序,例如查找新型的光催化剂,光电视球和高工作功能(WF)2D-Metal接触。

We develop a computational database, web-apps, and machine-learning (ML) models to accelerate the design and discovery of two-dimensional (2D)-heterostructures. Using density functional theory (DFT) based lattice-parameters and electronic band-energies for 674 non-metallic exfoliable 2D-materials, we generate 226,779 possible heterostructures. We classify these heterostructures into type-I, II and III systems according to Andersons rule, which is based on the relative band-alignments of the non-interacting monolayers. We find that type-II is the most common and the type-III the least common heterostructure type. We subsequently analyze the chemical trends for each heterostructure type in terms of the periodic table of constituent elements. The band alignment data can be also used for identifying photocatalysts and high-work function 2D-metals for contacts. We validate our results by comparing them to experimental data as well as hybrid-functional predictions. Additionally, we carry out DFT calculations of a few selected systems (MoS2/WSe2, MoS2/h-BN, MoSe2/CrI3), to compare the band-alignment description with the predictions from Andersons rule. We develop web-apps to enable users to virtually create combinations of 2D materials and predict their properties. Additionally, we use ML tools to predict band-alignment information for 2D materials. The web-apps, tools and associated data will be distributed through JARVIS-Heterostructure website (https://jarvis.nist.gov/jarvish/). Our analysis, results and the developed web-apps can be applied to the screening and design applications, such as finding novel photocatalysts, photodetectors, and high-work function (WF) 2D-metal contacts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源