论文标题

二进制神经网络:调查

Binary Neural Networks: A Survey

论文作者

Qin, Haotong, Gong, Ruihao, Liu, Xianglong, Bai, Xiao, Song, Jingkuan, Sebe, Nicu

论文摘要

二进制神经网络在很大程度上保存了存储和计算,它是在资源有限设备上部署深层模型的有前途技术。然而,二元化不可避免地会导致严重的信息丢失,更糟糕的是,其不连续性给深层网络的优化带来了困难。为了解决这些问题,已经提出了各种算法,并在近年来取得了令人满意的进步。在本文中,我们对这些算法进行了全面的调查,该算法主要分为直接进行二进制的天然解决方案,以及使用最小化量化错误,改善网络损耗函数并减少梯度误差的技术进行了优化的调查。我们还研究了二进制神经网络的其他实际方面,例如硬件友好的设计和培训技巧。然后,我们对不同任务的评估和讨论,包括图像分类,对象检测和语义分割。最后,未来研究中可能面临的挑战得到了解决。

The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network. To address these issues, a variety of algorithms have been proposed, and achieved satisfying progress in recent years. In this paper, we present a comprehensive survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error. We also investigate other practical aspects of binary neural networks such as the hardware-friendly design and the training tricks. Then, we give the evaluation and discussions on different tasks, including image classification, object detection and semantic segmentation. Finally, the challenges that may be faced in future research are prospected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源