论文标题
光磁性barnett效应
Optomagnonic Barnett effect
论文作者
论文摘要
结合了量子光学和镁质技术,我们发现圆形极化激光器可以动态地实现Quasiequilibrium少木bose-Einstein冷凝水(BEC)。激光和旋转之间的Zeeman耦合会产生光学Barnett场,并且其方向可以通过切换激光手性来控制。我们表明,光学Barnett场在通过逆转局部磁化强度进行绝缘铁磁体时会产生总磁化,从而导致Quasiequilibrium Magnon Bec。这种激光诱导的通过光学Barnett效应(称为OptoMagnonic Barnett效应)在Terahertz阶的高频状态下,通过光学Barnett效应(称为OptoMagnonic Barnett效应)通过光学barnett效应进行了。我们还提出了一种现实的实验设置,以使用当前的设备和测量技术以及激光chi来观察光磁性Barnett效应。光磁性barnett效应是用于超快旋转传输的应用的关键要素。
Combining the technologies of quantum optics and magnonics, we find that the circularly polarized laser can dynamically realize the quasiequilibrium magnon Bose-Einstein condensates (BEC). The Zeeman coupling between the laser and spins generates the optical Barnett field, and its direction is controllable by switching the laser chirality. We show that the optical Barnett field develops the total magnetization in insulating ferrimagnets with reversing the local magnetization, which leads to the quasiequilibrium magnon BEC. This laser-induced magnon BEC transition through optical Barnett effect, dubbed the optomagnonic Barnett effect, provides an access to coherent magnons in the high frequency regime of the order of terahertz. We also propose a realistic experimental setup to observe the optomagnonic Barnett effect using current device and measurement technologies as well as the laser chirping. The optomagnonic Barnett effect is a key ingredient for the application to ultrafast spin transport.