论文标题

因果关系学习

Causal Relational Learning

论文作者

Salimi, Babak, Parikh, Harsh, Kayali, Moe, Roy, Sudeepa, Getoor, Lise, Suciu, Dan

论文摘要

因果推论是自然和社会科学实证研究的核心,对于科学发现和明智的决策至关重要。因果推断的黄金标准是进行随机对照试验。不幸的是,由于道德,法律或成本限制,这些并不总是可行的。作为替代方案,在统计研究和社会科学中已经开发了观察数据的因果推断的方法论。但是,现有方法在很大程度上依赖于限制性假设,例如由均质元素组成的研究人群,这些元素可以在单个平台上表示,其中每一行被称为一个单位。相比之下,在许多现实世界中,研究领域自然由具有复杂关系结构的异质元素组成,其中数据在多个相关表中自然表示。在本文中,我们提出了从这种关系数据中的因果推断的正式框架。我们提出了一种称为Carl的声明语言,用于捕获因果背景知识和假设,并使用简单的数据型规则指定因果查询。CARL为推断因果关系和对关系域中复杂干预效果的推理提供了基础。我们对实际关系数据进行了广泛的实验评估,以说明卡尔在社会科学和医疗保健中的适用性。

Causal inference is at the heart of empirical research in natural and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortunately these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in statistical studies and social sciences. However, existing methods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world settings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions and specifying causal queries using simple Datalog-like rules.CaRL provides a foundation for inferring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源