论文标题

可查询控制的视频摘要

Query-controllable Video Summarization

论文作者

Huang, Jia-Hong, Worring, Marcel

论文摘要

当视频集变得庞大时,如何有效地探索内部和整个视频都具有挑战性。视频摘要是解决此问题的方法之一。传统的摘要方法限制了视频探索的有效性,因为它们仅为给定输入视频的固定视频摘要独立于用户的信息需求。在这项工作中,我们引入了一种方法,该方法将基于文本的查询作为输入,并生成与之相对应的视频摘要。我们这样做是通过将视频摘要作为监督学习问题进行建模,并提出了一种基于端到端的深度学习方法,用于查询可控视频摘要,以生成与查询有关的视频摘要。我们提出的方法由视频摘要控制器,视频摘要生成器和视频摘要输出模块组成。为了促进可查询可控制的视频摘要的研究并进行我们的实验,我们介绍了一个数据集,其中包含基于框架的相关得分标签。根据我们的实验结果,它表明基于文本的查询有助于控制视频摘要。它还显示基于文本的查询改善了我们的模型性能。我们的代码和数据集:https://github.com/jhhuangkay/query-controllable-video-summarization。

When video collections become huge, how to explore both within and across videos efficiently is challenging. Video summarization is one of the ways to tackle this issue. Traditional summarization approaches limit the effectiveness of video exploration because they only generate one fixed video summary for a given input video independent of the information need of the user. In this work, we introduce a method which takes a text-based query as input and generates a video summary corresponding to it. We do so by modeling video summarization as a supervised learning problem and propose an end-to-end deep learning based method for query-controllable video summarization to generate a query-dependent video summary. Our proposed method consists of a video summary controller, video summary generator, and video summary output module. To foster the research of query-controllable video summarization and conduct our experiments, we introduce a dataset that contains frame-based relevance score labels. Based on our experimental result, it shows that the text-based query helps control the video summary. It also shows the text-based query improves our model performance. Our code and dataset: https://github.com/Jhhuangkay/Query-controllable-Video-Summarization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源