论文标题
在准同质功能的模量空间上
On the moduli space of quasi-homogeneous functions
论文作者
论文摘要
我们将$(\ Mathbb {C}^2,0)$的分析等效函数的分析等效性细菌与其Bi-Lipschitz等价类别相关联。我们表明,任何不变的(减少)准同质函数的连续家庭具有恒定的Henry-Parusiński不变性的不变性。此外,我们表明,在同一亨利·帕鲁斯基(Henry-Parusiński)不变的准均匀函数中,只有有限数量的不同的Bi-lipschitz类,提供了此数字的最大配额。
We relate the moduli space of analytic equivalent germs of reduced quasi-homogeneous functions at $(\mathbb{C}^2,0)$ with their bi-Lipschitz equivalence classes. We show that any non-degenerate continuous family of (reduced) quasi-homogeneous functions with constant Henry-Parusiński invariant is analytically trivial. Further we show that there are only a finite number of distinct bi-Lipschitz classes among quasi-homogeneous functions with the same Henry-Parusiński invariant providing a maximum quota for this number.