论文标题

正式证明真实几何形状的新机会?

New Opportunities for the Formal Proof of Computational Real Geometry?

论文作者

{Á}brahám, Erika, Davenport, James, England, Matthew, Kremer, Gereon, Tonks, Zak

论文摘要

本文的目的是探讨一个问题:“我们在多大程度上可以在多大程度上产生实际代数几何形状的正式,可验证的证据?”以前提出过这个问题,但是到目前为止,回答此类问题的主要算法尚未正式化。我们介绍了一篇论文,即通过圆柱代数覆盖物来确定公式对真实的满意度的新算法[Ábrahám,英格兰,英格兰,克雷默,\ emph {确定非线性的实际算术范围允许使用canlindrical coverne coffers coption} 2020,以确定无线性的搜索范围。比竞争算法更容易受到机器验证。

The purpose of this paper is to explore the question "to what extent could we produce formal, machine-verifiable, proofs in real algebraic geometry?" The question has been asked before but as yet the leading algorithms for answering such questions have not been formalised. We present a thesis that a new algorithm for ascertaining satisfiability of formulae over the reals via Cylindrical Algebraic Coverings [Ábrahám, Davenport, England, Kremer, \emph{Deciding the Consistency of Non-Linear Real Arithmetic Constraints with a Conflict Driver Search Using Cylindrical Algebraic Coverings}, 2020] might provide trace and outputs that allow the results to be more susceptible to machine verification than those of competing algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源