论文标题

在单个测量场合的框架中,在双线性双线性样条生长曲线模型中估算结及其关联

Estimating Knots and Their Association in Parallel Bilinear Spline Growth Curve Models in the Framework of Individual Measurement Occasions

论文作者

Liu, Jin, Perera, Robert A.

论文摘要

带有样条函数的潜在生长曲线模型是灵活且可访问的统计工具,用于研究在明显变量中表现出不同发展阶段的非线性变化模式。在这样的模型中,双线性样条生长模型(BLSGM)是最直接,最直观但有用的。现有的研究表明,BLSGM允许打结(或更改点),在该结中,两个线性片段将两个线性段结合在一起,这是截距和斜率以外的其他生长因子,以便研究人员可以估计结中的结及其在单个测量场合框架中的变化。但是,发展过程通常在共同发展中展开,其中两个或多个结果及其变化模式随着时间而言是相关的。作为具有未知结的现有BLSGM的扩展,这项研究考虑了平行的BLSGM(PBLSGM),用于研究多个非线性生长过程,并在每个过程的变化以及单个测量框架的框架中以其每个过程的变异性以及结节的变化来估算结。我们通过仿真研究和现实世界数据分析介绍了所提出的模型。我们的仿真研究表明,所提出的PBLSGM通常公正地估计了感兴趣的参数,并表现出适当的置信区间覆盖范围。一个使用纵向阅读评分,数学评分和科学分数的经验示例表明,该模型可以估算每个生长曲线的差异以及两个结之间的协方差。我们还为提出的模型提供了相应的代码。

Latent growth curve models with spline functions are flexible and accessible statistical tools for investigating nonlinear change patterns that exhibit distinct phases of development in manifested variables. Among such models, the bilinear spline growth model (BLSGM) is the most straightforward and intuitive but useful. An existing study has demonstrated that the BLSGM allows the knot (or change-point), at which two linear segments join together, to be an additional growth factor other than the intercept and slopes so that researchers can estimate the knot and its variability in the framework of individual measurement occasions. However, developmental processes usually unfold in a joint development where two or more outcomes and their change patterns are correlated over time. As an extension of the existing BLSGM with an unknown knot, this study considers a parallel BLSGM (PBLSGM) for investigating multiple nonlinear growth processes and estimating the knot with its variability of each process as well as the knot-knot association in the framework of individual measurement occasions. We present the proposed model by simulation studies and a real-world data analysis. Our simulation studies demonstrate that the proposed PBLSGM generally estimate the parameters of interest unbiasedly, precisely and exhibit appropriate confidence interval coverage. An empirical example using longitudinal reading scores, mathematics scores, and science scores shows that the model can estimate the knot with its variance for each growth curve and the covariance between two knots. We also provide the corresponding code for the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源