论文标题

在半线上的单数Schrödinger操作员的特征

A characterization of singular Schrödinger operators on the half-line

论文作者

Scandone, Raffaele, Baglini, Lorenzo Luperi, Simonov, Kyrylo

论文摘要

我们研究了一类Laplacian在半线上的Delta样扰动,其特征在于起源处的Robin边界条件。使用非标准分析的形式主义,我们与合适的Schrödinger运算符家族得出了一个简单的联系,其潜力非常大(无限)幅度且非常短(无穷小)范围。结果,在径向电势的情况下,我们还获得了欧几里得空间$ \ mathbb {r}^3 $的点相互作用的类似结果。此外,我们在原点附近有线性的情况下明确讨论了我们的结果。

We study a class of delta-like perturbations of the Laplacian on the half-line, characterized by Robin boundary conditions at the origin. Using the formalism of nonstandard analysis, we derive a simple connection with a suitable family of Schrödinger operators with potentials of very large (infinite) magnitude and very short (infinitesimal) range. As a consequence, we also derive a similar result for point interactions in the Euclidean space $\mathbb{R}^3$, in the case of radial potentials. Moreover, we discuss explicitly our results in the case of potentials that are linear in a neighbourhood of the origin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源