论文标题
撞击引起的岩浆海洋的几何形状的缩放定律
Scaling laws for the geometry of an impact-induced magma ocean
论文作者
论文摘要
在这里,我们为(1)基于100多个平滑颗粒流体动力学(SPH)模拟,为(1)(1)撞击引起的热量的分布和(2)撞击引起的熔体的分布。我们使用Legendre多项式来描述这些缩放定律,并通过线性回归来确定其系数,从而最大程度地减少模型和SPH模拟之间的误差。输入参数是冲击角$θ$($ 0^{\ circ},30^{\ circ},60^{\ circ} $和$ 90^{\ circ} $),总质量$ $ $ m_t $($ 1M _ {\ rm Mars} -533m _ {火星} $是火星的质量),冲击速度$ v _ {\ rm imp} $($ v _ {\ rm eSc} - 2v _ {\ rm eSc} $,其中$ v _ {\ rm ecs ecs $是互use susce useve velocity to toculate susce velocity),以及影响器质量$ $ $ $ 0. 0.03-03-03-0。我们发现,熔体池底部的平衡压力可能高于径向均匀的全球岩浆海洋模型的平衡压力。这可能会对元素分配产生重大影响。这些熔体缩放定律在GitHub上公开可用($ \ href {https://github.com/mikinakajima/meltscalinglaw} {https://github.com/mikinakaakajima/meltscalinglaw} $)。
Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle $θ$ ($0^{\circ}, 30^{\circ}, 60^{\circ}$, and $90^{\circ}$), total mass $M_T$ ($1M_{\rm Mars}-53M_{\rm Mars}$, where $M_{\rm Mars}$ is the mass of Mars), impact velocity $v_{\rm imp}$ ($v_{\rm esc} - 2v_{\rm esc}$, where $v_{\rm esc}$ is the mutual escape velocity), and impactor-to-total mass ratio $γ$ ($0.03-0.5$). We find that the equilibrium pressure at the base of a melt pool can be higher (up to $\approx 80 \%$) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub ($\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}$).