论文标题
具有较大常规位置的图表的表征
Characterization of classes of graphs with large general position number
论文作者
论文摘要
受到著名的无三重问题的启发,并受到离散几何形状的一般位置子集选择问题的启发,如下所示。如果没有$ s $的元素位于$ s $的其他两个元素之间,则图$ g $中的$ s $顶点是一般位置集。最大的一般位置集的基础性是$g。$g。$g。$g。in \ cite {ullas-2016}图$ g $ g $ n $ a $ n $ at $ {\ rm gp}(g)(g)(g)$ $ \ in \ in \ in \ n,n,n,n,n,n,n,n,n,n,n $,在本文中,我们表征了所有连接的订单$ n \ geq 4 $的类别的类别,其中一般位置号$ n-2。
Getting inspired by the famous no-three-in-line problem and by the general position subset selection problem from discrete geometry, the same is introduced into graph theory as follows. A set $S$ of vertices in a graph $G$ is a general position set if no element of $S$ lies on a geodesic between any two other elements of $S$. The cardinality of a largest general position set is the general position number ${\rm gp}(G)$ of $G.$ In \cite{ullas-2016} graphs $G$ of order $n$ with ${\rm gp}(G)$ $\in \{2, n, n-1\}$ were characterized. In this paper, we characterize the classes of all connected graphs of order $n\geq 4$ with the general position number $n-2.$