论文标题

使用经典和量子模型预测人类生成的bitstreams

Predicting human-generated bitstreams using classical and quantum models

论文作者

Bocharov, Alex, Freedman, Michael, Kemp, Eshan, Roetteler, Martin, Svore, Krysta M.

论文摘要

一所思想流派认为,人类决策表现出类似量子的逻辑。虽然尚不清楚大脑是否确实可以由实际的量子机制驱动,但一些研究人员认为,决策逻辑在现象学上是非古典的。本文开发并实现了探索这种观点的经验框架。我们使用低宽度,低深度,参数化量子电路模拟二进制决策。在这里,纠缠是在简单的比特预测游戏的背景下作为模式分析的资源。我们评估了混合量子辅助的机器学习策略,其中使用量子处理来检测Bitstreams中的相关性,而参数更新和类推断是通过测量结果的经典后处理来执行的。仿真结果表明,两个Quition差异电路的家族足以达到与最佳传统古典解决方案(例如神经网或Logistic AutoRecression)相同的比特预测准确性。因此,除了在这种简单的情况下建立可证明的“量子优势”,我们还提供了证据表明,可以通过小量子模型来实现对人类生成的比特斯流的经典可预测性分析。

A school of thought contends that human decision making exhibits quantum-like logic. While it is not known whether the brain may indeed be driven by actual quantum mechanisms, some researchers suggest that the decision logic is phenomenologically non-classical. This paper develops and implements an empirical framework to explore this view. We emulate binary decision-making using low width, low depth, parameterized quantum circuits. Here, entanglement serves as a resource for pattern analysis in the context of a simple bit-prediction game. We evaluate a hybrid quantum-assisted machine learning strategy where quantum processing is used to detect correlations in the bitstreams while parameter updates and class inference are performed by classical post-processing of measurement results. Simulation results indicate that a family of two-qubit variational circuits is sufficient to achieve the same bit-prediction accuracy as the best traditional classical solution such as neural nets or logistic autoregression. Thus, short of establishing a provable "quantum advantage" in this simple scenario, we give evidence that the classical predictability analysis of a human-generated bitstream can be achieved by small quantum models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源