论文标题
SU(2)Anderson晶格模型中的量子临界和动态近代效应
Quantum Criticality and Dynamical Kondo Effect in an SU(2) Anderson Lattice Model
论文作者
论文摘要
金属量子的临界性通常在具有局部有效自由度的密切相关的系统中发展。在这项工作中,我们考虑了带有SU(2)对称性的Anderson晶格模型。该模型由扩展的动态平均场理论(EDMFT)与连续的量子蒙特卡洛法结合使用。我们证明了连续的量子相变,确定随后的量子临界点为近束毁灭类型,并确定异常缩放特性。我们将过渡的连续性连接到动态的近藤效应,我们以局部纠缠熵和相关特性为特征。这种效应阐明了量子关键重型费米恩系统的异常行为。
Metallic quantum criticality often develops in strongly correlated systems with local effective degrees of freedom. In this work, we consider an Anderson lattice model with SU(2) symmetry. The model is treated by the extended dynamical mean-field theory (EDMFT) in combination with a continuous-time quantum Monte Carlo method. We demonstrate a continuous quantum phase transition, establish the ensuing quantum critical point to be of a Kondo-destruction type, and determine the anomalous scaling properties. We connect the continuous nature of the transition to a dynamical Kondo effect, which we characterize in terms of a local entanglement entropy and related properties. This effect elucidates the unusual behavior of quantum critical heavy fermion systems.