论文标题

使用神经网络检测:解释黑匣子

Phase Detection with Neural Networks: Interpreting the Black Box

论文作者

Dawid, Anna, Huembeli, Patrick, Tomza, Michał, Lewenstein, Maciej, Dauphin, Alexandre

论文摘要

神经网络(NNS)通常会阻碍其预测背后的推理的任何见解。我们证明了影响功能在经过训练时如何揭开NN的黑匣子,以预测一维延长的无旋式费米 - 哈伯德模型的阶段。结果提供了有力的证据,表明NN正确地了解了描述该模型中量子过渡的顺序参数。我们证明了影响功能可以检查训练以识别已知量子阶段的网络是否可以预测数据集中的新未知阶段。此外,我们表明他们可以指导物理学家理解负责相变的模式。此方法不需要关于顺序参数的先验知识,不依赖NN的体系结构或基础物理模型,因此适用于广泛的物理模型或实验数据。

Neural networks (NNs) usually hinder any insight into the reasoning behind their predictions. We demonstrate how influence functions can unravel the black box of NN when trained to predict the phases of the one-dimensional extended spinless Fermi-Hubbard model at half-filling. Results provide strong evidence that the NN correctly learns an order parameter describing the quantum transition in this model. We demonstrate that influence functions allow to check that the network, trained to recognize known quantum phases, can predict new unknown ones within the data set. Moreover, we show they can guide physicists in understanding patterns responsible for the phase transition. This method requires no a priori knowledge on the order parameter, has no dependence on the NN's architecture or the underlying physical model, and is therefore applicable to a broad class of physical models or experimental data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源