论文标题

有关重型启动的更多信息

More on Heavy-Light Bootstrap up to Double-Stress-Tensor

论文作者

Li, Yue-Zhou, Zhang, Hao-Yu

论文摘要

我们调查了重型四点功能,直至双重压力张量,并补充了1910.06357。通过在文献中使用最低的双重压力张量的OPE系数,我们发现在大型撞击参数示体内,最低的双重压力调节的regge行为通常是最低的双重压力调节器。接下来,我们执行Lorentzian倒置公式,以获得双扭动操作员的OPE系数和异常尺寸$ [\ MATHCAL {O} _H \ MATHCAL {O} _l] _ {o} _ {n,j} $,并在$ d = 4 $ d = 4 $中使用有限的spin $ j $。我们还提取了具有有限旋转的双扭操作员的异常维度,这使我们能够解决以下情况:$δ_l$被指定给最低差的双重压力量的杆,其中某些双重跟踪操作员$ [\ nathcal {\ nathcal {o} {o} _l {o} _l \ mathcal {oest low} $}双重压力调整。特别是,我们验证并讨论了确定混合异常尺寸和混合OPE的乘积的残留关系。我们还介绍了与$ d = 6,8 $的$Δ_l$ pol相关的双轨和混合OPE系数。最后,我们转向讨论CFT $ _2 $,我们验证了与Virasoso Symmetry一致的双重压力调整的独特性。

We investigate the heavy-light four-point function up to double-stress-tensor, supplementing 1910.06357. By using the OPE coefficients of lowest-twist double-stress-tensor in the literature, we find the Regge behavior for lowest-twist double-stress-tensor in general even dimension within the large impact parameter regime. In the next, we perform the Lorentzian inversion formula to obtain both the OPE coefficients and anomalous dimensions of double-twist operators $[\mathcal{O}_H\mathcal{O}_L]_{n,J}$ with finite spin $J$ in $d=4$. We also extract the anomalous dimensions of double-twist operators with finite spin in general dimension, which allows us to address the cases that $Δ_L$ is specified to the poles in lowest-twist double-stress-tensors where certain double-trace operators $[\mathcal{O}_L\mathcal{O}_L]_{n,J}$ mix with lowest-twist double-stress-tensors. In particular, we verify and discuss the Residue relation that determines the product of the mixed anomalous dimension and the mixed OPE. We also present the double-trace and mixed OPE coefficients associated with $Δ_L$ poles in $d=6,8$. In the end, we turn to discuss CFT$_2$, we verify the uniqueness of double-stress-tensor that is consistent with Virasoso symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源