论文标题
高衍生的重力理论中的球形对称溶液
Spherically Symmetric Solutions in Higher-Derivative Theories of Gravity
论文作者
论文摘要
重力理论从多个领域受到了很多关注,包括量子重力,弦理论和宇宙学。本文提出了一个高阶重力,其动作包括所有曲率标量术语,直到一般相对性的二阶校正,即$ r^{2} $,$ r^{3} $和$ r \ square r $。然后,我们探索在弱场和黑洞环境中的球形对称和静态解决方案。推断出由于点质量而引起的弱场状态中的所有解决方案,通过对这些解决方案进行稳定分析,我们将它们限制在Yukawa型解决方案中。关于黑洞溶液,我们使用Lichnerovicz方法来研究非Schwarzschild黑洞存在的可能性。获得的结果表明,可能存在非SCHWARZSCHILD解决方案。但是,对于理论参数的合理值,其地平线半径非常小,使宏观黑洞与Schwarzschild不同。
Higher-order theories of gravity have received much attention from several areas including quantum gravity, string theory and cosmology. This paper proposes a higher-order gravity whose action includes all curvature scalar terms up to the second-order corrections of general relativity, namely, $R^{2}$, $R^{3}$ and $R\square R$. Then, we explore spherically symmetric and static solutions in the weak-field regime and black holes context. All solutions in the weak-field regime due to a point mass are deduced, and by making a stability analysis of these solutions, we restrict them to Yukawa-type solutions. In regard to black hole solutions, we use the Lichnerovicz method to investigate the possibility of existence of non-Schwarzschild black holes. The results obtained show that non-Schwarzschild solutions might exist. However, for reasonable values of the parameters of the theory, its horizon radii are extremely small making macroscopic black holes different from Schwarzschild unfeasible.