论文标题

高衍生的重力理论中的球形对称溶液

Spherically Symmetric Solutions in Higher-Derivative Theories of Gravity

论文作者

Rodrigues-da-Silva, G., Medeiros, L. G.

论文摘要

重力理论从多个领域受到了很多关注,包括量子重力,弦理论和宇宙学。本文提出了一个高阶重力,其动作包括所有曲率标量术语,直到一般相对性的二阶校正,即$ r^{2} $,$ r^{3} $和$ r \ square r $。然后,我们探索在弱场和黑洞环境中的球形对称和静态解决方案。推断出由于点质量而引起的弱场状态中的所有解决方案,通过对这些解决方案进行稳定分析,我们将它们限制在Yukawa型解决方案中。关于黑洞溶液,我们使用Lichnerovicz方法来研究非Schwarzschild黑洞存在的可能性。获得的结果表明,可能存在非SCHWARZSCHILD解决方案。但是,对于理论参数的合理值,其地平线半径非常小,使宏观黑洞与Schwarzschild不同。

Higher-order theories of gravity have received much attention from several areas including quantum gravity, string theory and cosmology. This paper proposes a higher-order gravity whose action includes all curvature scalar terms up to the second-order corrections of general relativity, namely, $R^{2}$, $R^{3}$ and $R\square R$. Then, we explore spherically symmetric and static solutions in the weak-field regime and black holes context. All solutions in the weak-field regime due to a point mass are deduced, and by making a stability analysis of these solutions, we restrict them to Yukawa-type solutions. In regard to black hole solutions, we use the Lichnerovicz method to investigate the possibility of existence of non-Schwarzschild black holes. The results obtained show that non-Schwarzschild solutions might exist. However, for reasonable values of the parameters of the theory, its horizon radii are extremely small making macroscopic black holes different from Schwarzschild unfeasible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源