论文标题

通过有监督的自动编码器估算大脑网络预测压力和基因型

Estimating a Brain Network Predictive of Stress and Genotype with Supervised Autoencoders

论文作者

Talbot, Austin, Dunson, David, Dzirasa, Kafui, Carlson, David

论文摘要

靶向刺激大脑有可能治疗精神疾病。我们提出了一种方法来通过确定与疾病状态相关的许多大脑区域的电动动力学来帮助设计刺激方案。我们将多区域电活动建模为潜在网络的活性叠加,其中潜在网络上的权重与感兴趣的结果有关。为了改善这种情况下的潜在因子建模的缺点,我们专注于监督自动编码器(SAE),这些自动编码器可以在维护生成模型的同时提高预测性能。我们解释了为什么SAE产生改进的预测,描述SAE是合适的建模选择的分布假设,并提供建模约束以确保学习网络的生物学相关性。我们使用分析策略来找到与压力相关的网络,该网络表征了与躁郁症相关的基因型。这发现网络与先前使用的刺激技术保持一致,从而对我们的方法进行了实验验证。

Targeted stimulation of the brain has the potential to treat mental illnesses. We propose an approach to help design the stimulation protocol by identifying electrical dynamics across many brain regions that relate to illness states. We model multi-region electrical activity as a superposition of activity from latent networks, where the weights on the latent networks relate to an outcome of interest. In order to improve on drawbacks of latent factor modeling in this context, we focus on supervised autoencoders (SAEs), which can improve predictive performance while maintaining a generative model. We explain why SAEs yield improved predictions, describe the distributional assumptions under which SAEs are an appropriate modeling choice, and provide modeling constraints to ensure biological relevance of the learned network. We use the analysis strategy to find a network associated with stress that characterizes a genotype associated with bipolar disorder. This discovered network aligns with a previously used stimulation technique, providing experimental validation of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源