论文标题
进攻率及其分级多项式身份的等级
Gradings on Incidence Algebras and their Graded Polynomial Identities
论文作者
论文摘要
让P一个局部有限的部分有限的集合,F A组,G A组和I(p,f)P上方的p的发生率代数。我们描述了该代数上的所有不等于的基本G级。如果p是界限的,则F是一个无限的特征零场,A,B是满足相同G级的多项式身份的基本G级入射代数,并且P的自动形态群体在P的最大链上进行了parts,我们表明A和B逐渐毕业。
Let P a locally finite partially ordered set, F a field, G a group, and I(P,F) the incidence algebra of P over F. We describe all the inequivalent elementary G-gradings on this algebra. If P is bounded, F is a infinite field of characteristic zero, and A, B are both elementary G-graded incidence algebras satisfying the same G-graded polynomial identities, and the automorphisms group of P acts transitively on the maximal chains of P , we show that A and B are graded isomorphic.