论文标题

$ {\ mathfrak {sl} _n} $的环球中心扩展的有限呈现性

Finite presentability of universal central extensions of ${\mathfrak{sl}_n}$

论文作者

Zelmanov, Efim, Zhang, Zezhou

论文摘要

在本文中,我们讨论了lie代数$ {\ mathfrak {sl} _n(r)} $的环球中心扩展的有限呈现性,其中$ n \ geq 3 $和$ r $是一个Unital Associative $ K $ -Algebra。我们表明,只有在有限地呈现代数$ r $的情况下,只有当且仅当代数$ r $有限地提出时,都会有限地提出通用的中央扩展。

In this paper we discuss finite presentability of the universal central extensions of Lie algebras ${\mathfrak{sl}_n(R)}$, where $n\geq 3$ and $R$ is a unital associative $k$-algebra. We show that a universal central extension is finitely presented if and only if the algebra $R$ is finitely presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源