论文标题
机器学习中的物理学耦合以预测高温合金的特性
Coupling Physics in Machine Learning to Predict Properties of High-temperatures Alloys
论文作者
论文摘要
高温合金设计需要同时考虑不同长度尺度的多种机制。我们提出了一个工作流程,将高度相关的物理学融入机器学习(ML),以预测复杂的高温合金的性能,其中9-12 wt。%Cr钢的示例产生强度。我们已结合了合成合金特征,可将微结构和相转换捕获到数据集中。从相关分析中鉴定出影响9CR屈服强度的高影响力特征与普遍接受的强化机制非常吻合。作为验证过程的一部分,已经对温度进行了广泛的评估,然后对训练有素的ML模型的边界条件进行了完善。使用ML模型的9CR钢的预测屈服强度与实验非常吻合。当前的方法在询问受过训练的ML模型时会引入物理上有意义的约束,以预测应用于数据驱动材料的假设合金的性质。
High-temperature alloy design requires a concurrent consideration of multiple mechanisms at different length scales. We propose a workflow that couples highly relevant physics into machine learning (ML) to predict properties of complex high-temperature alloys with an example of the 9-12 wt.% Cr steels yield strength. We have incorporated synthetic alloy features that capture microstructure and phase transformations into the dataset. Identified high impact features that affect yield strength of 9Cr from correlation analysis agree well with the generally accepted strengthening mechanism. As part of the verification process, the consistency of sub-datasets has been extensively evaluated with respect to temperature and then refined for the boundary conditions of trained ML models. The predicted yield strength of 9Cr steels using the ML models is in excellent agreement with experiments. The current approach introduces physically meaningful constraints in interrogating the trained ML models to predict properties of hypothetical alloys when applied to data-driven materials.