论文标题

计划的驯服网站

The tame site of a scheme

论文作者

Hübner, Katharina, Schmidt, Alexander

论文摘要

具有不可糊化系数的étale共同体具有一些不愉快的特性,例如,它不是^1-homotopy的不变性,对于可构造系数而言,预期的有限属性不具有。在本文中,我们介绍了“驯服网站”,该网站比étale网站稍微太粗糙。温和的同胞与可逆系数相吻合,但在一般情况下表现得更好。驯服场地的基本组是威森德和克尔兹/施密特的(曲线 - 驯服的基本小组。较高的驯服同型组有望比较高的典型同型群具有更好的行为,而典型的同型组消失了,因为阿奇林格的结果是积极特征的仿射方案。

Étale cohomology with non-invertible coefficients has some unpleasant properties, e.g., it is not A^1-homotopy invariant and for constructible coefficients the expected finiteness properties do not hold. In this paper we introduce the `tame site' which is slightly coarser than the étale site. Tame cohomology coincides with étale cohomology for invertible coefficients but is better behaved in the general case. The fundamental group of the tame site is the (curve-)tame fundamental group of Wiesend and Kerz/Schmidt. The higher tame homotopy groups hopefully have a better behaviour than the higher étale homotopy groups, which vanish for affine schemes in positive characteristic by a result of Achinger.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源