论文标题
FDA:语义分割的傅立叶域改编
FDA: Fourier Domain Adaptation for Semantic Segmentation
论文作者
论文摘要
我们描述了一种无监督域适应性的简单方法,从而通过与另一个的低频频谱交换源和目标分布之间的差异可以减少。我们说明了语义分割中的方法,其中一个域中的密集注释的图像(合成数据)大量,但在另一个域中很难获得(真实图像)。当前的最新方法很复杂,有些需要对抗性优化,以使神经网络的骨干不变到离散域选择变量。我们的方法不需要任何训练来执行域的对齐,只是一个简单的傅立叶变换及其倒数。尽管它很简单,但它在当前基准测试中达到了最先进的性能,当时将其集成到相对标准的语义分割模型中。我们的结果表明,即使简单的过程也可以在数据中难以学习的数据中折扣滋扰可变性。
We describe a simple method for unsupervised domain adaptation, whereby the discrepancy between the source and target distributions is reduced by swapping the low-frequency spectrum of one with the other. We illustrate the method in semantic segmentation, where densely annotated images are aplenty in one domain (synthetic data), but difficult to obtain in another (real images). Current state-of-the-art methods are complex, some requiring adversarial optimization to render the backbone of a neural network invariant to the discrete domain selection variable. Our method does not require any training to perform the domain alignment, just a simple Fourier Transform and its inverse. Despite its simplicity, it achieves state-of-the-art performance in the current benchmarks, when integrated into a relatively standard semantic segmentation model. Our results indicate that even simple procedures can discount nuisance variability in the data that more sophisticated methods struggle to learn away.