论文标题

通过点的定位和距离正则化从牙科全景X射线图像中的单个牙齿检测和识别

Individual Tooth Detection and Identification from Dental Panoramic X-Ray Images via Point-wise Localization and Distance Regularization

论文作者

Chung, Minyoung, Lee, Jusang, Park, Sanguk, Lee, Minkyung, Lee, Chae Eun, Lee, Jeongjin, Shin, Yeong-Gil

论文摘要

牙齿全景X射线成像是一种流行的诊断方法,因为它的辐射剂量很小。对于牙科诊所的自动计算机辅助诊断系统,从全景X射线图像中自动检测和鉴定单个牙齿是关键的先决条件。在这项研究中,我们通过引入空间距离正规化损失来提出一个点上的牙齿定位神经网络。提出的网络最初对所有解剖牙齿(即32点)执行中心点回归,该牙齿会自动识别每个牙齿。通过考虑$ L_2 $正规化laplacian在空间距离上的正规化损失,在32点上采用了一种新颖的距离正规化罚款。随后,牙齿盒在基础上使用级联的神经网络单独定位。最终输出对多任务偏移培训进行了提高本地化准确性。我们的方法不仅成功地定位了现有的牙齿,而且还缺少牙齿。因此,实现了高度准确的检测和识别。实验结果表明,与最佳性能方法相比,提出的算法通过将牙齿检测的平均精度提高15.71%,胜过最先进的方法。识别精度的精度为0.997,召回值为0.972。此外,由于固定的32点的先前回归,无论牙齿的存在如何,因此提出的网络不需要任何其他识别算法。

Dental panoramic X-ray imaging is a popular diagnostic method owing to its very small dose of radiation. For an automated computer-aided diagnosis system in dental clinics, automatic detection and identification of individual teeth from panoramic X-ray images are critical prerequisites. In this study, we propose a point-wise tooth localization neural network by introducing a spatial distance regularization loss. The proposed network initially performs center point regression for all the anatomical teeth (i.e., 32 points), which automatically identifies each tooth. A novel distance regularization penalty is employed on the 32 points by considering $L_2$ regularization loss of Laplacian on spatial distances. Subsequently, teeth boxes are individually localized using a cascaded neural network on a patch basis. A multitask offset training is employed on the final output to improve the localization accuracy. Our method successfully localizes not only the existing teeth but also missing teeth; consequently, highly accurate detection and identification are achieved. The experimental results demonstrate that the proposed algorithm outperforms state-of-the-art approaches by increasing the average precision of teeth detection by 15.71% compared to the best performing method. The accuracy of identification achieved a precision of 0.997 and recall value of 0.972. Moreover, the proposed network does not require any additional identification algorithm owing to the preceding regression of the fixed 32 points regardless of the existence of the teeth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源