论文标题

关于矩阵环上的约旦中心化概括的新结果

New Results on Generalization of Jordan centralizers over matrix rings

论文作者

Ghosh, Arindam, Prakash, Om, Singh, Sushma

论文摘要

本文对矩阵环上的Jordan地图进行了一项研究,其中一些功能方程与这些环上的加性图有关。我们首先证明,每个约旦在矩阵环上左(右)centerrizer都是左(右)centralizer。此外,矩阵环上的每个双面式中心器都是特定形式的。此外,我们证明,在矩阵环上满足功能方程的任何加性图成为双面centralizer。最后,我们在Jordan上以矩阵戒指上的$ \ star $ - centralizer在jordan上的一些结果结束了工作,并在$ \ star $ centralizer出现的功能方程式上建立了一些结果。

This paper presents a study on Jordan maps over matrix rings with some functional equations related to additive maps on these rings. We first show that every Jordan left (right) centralizer over a matrix ring is a left (right) centralizer. Moreover, every two-sided centralizer over the matrix ring is of a particular form. Further, we prove that any additive map satisfying functional equations over matrix rings becomes a two-sided centralizer. Finally, we conclude our work with some results on the Jordan left $\star$- centralizer over matrix rings and establish some results on functional equations that arise for the $\star$-centralizer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源