论文标题

宇宙学旋转器

The Cosmological Spinor

论文作者

Achour, Jibril Ben, Livine, Etera R.

论文摘要

我们以前对Friedman-Lema \^ Itre-Robertson-Walker(FLRW)宇宙学的一维形式对称性进行了研究,并通过在经典层面上以经典级别的理论进行重新制定,以$ \ textrm {sl}(2,\ nathbbbb \ rant)$ - 新工具是宇宙学相位空间的规范转换,以旋转器的形式编写它,即在$ \ textrm {su}(1,1)(1,1)\ sim \ sim \ textrm {sl}的基本表示下转换的一对复杂变量。由此产生的FLRW Hamiltonian约束仅在旋转器中仅是二次的,而FLRW宇宙学被写为类似Schrödinger的动作原理。然后可以将共形转换写成适当的依赖时间$ \ textrm {sl}(2,\ mathbb {r})$变换。我们以FLRW对任意二次汉密尔顿的可能的概括为结论,并讨论了旋转器作为重力的物质场或物质上的几何形状的解释。

We build upon previous investigation of the one-dimensional conformal symmetry of the Friedman-Lema\^ itre-Robertson-Walker (FLRW) cosmology of a free scalar field and make it explicit through a reformulation of the theory at the classical level in terms of a manifestly $\textrm{SL}(2,\mathbb{R})$-invariant action principle. The new tool is a canonical transformation of the cosmological phase space to write it in terms of a spinor, i.e. a pair of complex variables that transform under the fundamental representation of $\textrm{SU}(1,1)\sim\textrm{SL}(2,\mathbb{R})$. The resulting FLRW Hamiltonian constraint is simply quadratic in the spinor and FLRW cosmology is written as a Schrödinger-like action principle. Conformal transformations can then be written as proper-time dependent $\textrm{SL}(2,\mathbb{R})$ transformations. We conclude with possible generalizations of FLRW to arbitrary quadratic Hamiltonian and discuss the interpretation of the spinor as a gravitationally-dressed matter field or matter-dressed geometry observable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源