论文标题

使用对抗训练和深度转移学习的黑色素瘤检测

Melanoma Detection using Adversarial Training and Deep Transfer Learning

论文作者

Zunair, Hasib, Hamza, A. Ben

论文摘要

皮肤病变数据集主要由普通样本组成,只有一小部分异常样品,从而导致了类不平衡问题。同样,由于较低的类间变异性,皮肤病变图像在总体外观上大致相似。在本文中,我们提出了一个两阶段的框架,用于使用对抗性训练和向黑色素瘤检测进行转移学习对皮肤病变图像进行自动分类。在第一阶段,我们通过学习使用不成熟的图像到图像的翻译来利用数据分布的阶层变化来完成条件图像合成的任务来综合有条件的图像合成。在第二阶段,我们使用原始训练集与新合成的不足的类样本相结合,训练深层卷积神经网络进行皮肤病变分类。该分类器的培训是通过最大程度地减少焦点损失函数来进行的,该局部损失函数有助于模型从艰难的例子中学习,同时降低了轻松的损失功能。根据皮肤病学图像基准进行的实验证明了我们所提出的方法比几种标准基线方法的优越性,从而实现了显着的性能改善。有趣的是,我们通过特征可视化和分析表明,我们的方法会导致基于上下文的病变评估,该评估可以达到专家皮肤科医生水平。

Skin lesion datasets consist predominantly of normal samples with only a small percentage of abnormal ones, giving rise to the class imbalance problem. Also, skin lesion images are largely similar in overall appearance owing to the low inter-class variability. In this paper, we propose a two-stage framework for automatic classification of skin lesion images using adversarial training and transfer learning toward melanoma detection. In the first stage, we leverage the inter-class variation of the data distribution for the task of conditional image synthesis by learning the inter-class mapping and synthesizing under-represented class samples from the over-represented ones using unpaired image-to-image translation. In the second stage, we train a deep convolutional neural network for skin lesion classification using the original training set combined with the newly synthesized under-represented class samples. The training of this classifier is carried out by minimizing the focal loss function, which assists the model in learning from hard examples, while down-weighting the easy ones. Experiments conducted on a dermatology image benchmark demonstrate the superiority of our proposed approach over several standard baseline methods, achieving significant performance improvements. Interestingly, we show through feature visualization and analysis that our method leads to context based lesion assessment that can reach an expert dermatologist level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源