论文标题

通过顺序特征金字塔网络的镶嵌超分辨率

Mosaic Super-resolution via Sequential Feature Pyramid Networks

论文作者

Shoeiby, Mehrdad, Armin, Mohammad Ali, Aliakbarian, Sadegh, Anwar, Saeed, Petersson, Lars

论文摘要

多光谱摄像机设计的进步导致了从天文学到自动驾驶的广泛应用中的极大兴趣。但是,这种相机固有地遭受了空间和光谱分辨率之间的权衡。在本文中,我们建议通过引入一种新颖的方法来解决此限制,以对原始镶嵌图像,多光谱或RGB拜耳进行超级分辨率,并由现代实时的实时单光马赛克传感器捕获。为此,我们设计了一个深层的超分辨率体系结构,该体系结构受益于网络深度的连续特征金字塔。实际上,这是通过利用卷积LSTM(Convlstm)来学习不同感受场特征之间相互依存关系来实现的。此外,通过研究我们框架中不同注意力机制的影响,我们表明,弯曲的启发模块能够在我们的背景下提供较高的关注。我们广泛的实验和分析证据表明,我们的方法产生了显着的超分辨率质量,在拜耳和多光谱图像上都超过了当前最新的马赛克超分辨率方法。此外,据我们所知,我们的方法是第一种超级溶解镶嵌图像的专业方法,无论是多光谱还是拜耳。

Advances in the design of multi-spectral cameras have led to great interests in a wide range of applications, from astronomy to autonomous driving. However, such cameras inherently suffer from a trade-off between the spatial and spectral resolution. In this paper, we propose to address this limitation by introducing a novel method to carry out super-resolution on raw mosaic images, multi-spectral or RGB Bayer, captured by modern real-time single-shot mosaic sensors. To this end, we design a deep super-resolution architecture that benefits from a sequential feature pyramid along the depth of the network. This, in fact, is achieved by utilizing a convolutional LSTM (ConvLSTM) to learn the inter-dependencies between features at different receptive fields. Additionally, by investigating the effect of different attention mechanisms in our framework, we show that a ConvLSTM inspired module is able to provide superior attention in our context. Our extensive experiments and analyses evidence that our approach yields significant super-resolution quality, outperforming current state-of-the-art mosaic super-resolution methods on both Bayer and multi-spectral images. Additionally, to the best of our knowledge, our method is the first specialized method to super-resolve mosaic images, whether it be multi-spectral or Bayer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源