论文标题
多元进化通用线性模型框架,具有自适应估算的索赔。
A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving
论文作者
论文摘要
在本文中,我们为索赔保留开发了多元进化的通用线性模型(GLM)框架,该框架允许索赔活动的动态特征与跨业务线的依赖关系结合使用,以准确评估索赔储备。我们将传统的GLM保留框架扩展到两个方面:允许GLM固定因素以递归方式进化,并使用共同的冲击方法将依赖性纳入这些因素的规范中。 我们考虑了在事故年代发展的因素,以及在日历年中进化的因素。由于传统的进化模型,这种因素的二维演变通常在一个时间维度中考虑进化。这为估计过程带来了挑战,我们在本文中解决了这一问题。我们通过参数学习过程开发了粒子过滤算法的公式。这是一种自适应估计方法,随着时间的流逝,它递归地更新了框架的不断发展的因素。 我们通过模拟数据集以及加拿大保险公司的一组实际数据来实施和说明我们的模型。
In this paper, we develop a multivariate evolutionary generalised linear model (GLM) framework for claims reserving, which allows for dynamic features of claims activity in conjunction with dependency across business lines to accurately assess claims reserves. We extend the traditional GLM reserving framework on two fronts: GLM fixed factors are allowed to evolve in a recursive manner, and dependence is incorporated in the specification of these factors using a common shock approach. We consider factors that evolve across accident years in conjunction with factors that evolve across calendar years. This two-dimensional evolution of factors is unconventional as a traditional evolutionary model typically considers the evolution in one single time dimension. This creates challenges for the estimation process, which we tackle in this paper. We develop the formulation of a particle filtering algorithm with parameter learning procedure. This is an adaptive estimation approach which updates evolving factors of the framework recursively over time. We implement and illustrate our model with a simulated data set, as well as a set of real data from a Canadian insurer.