论文标题

schr {Ö} dinger-langevin方程的动力学

Dynamics of the Schr{ö}dinger-Langevin Equation

论文作者

Chauleur, Quentin

论文摘要

我们考虑对数非线性的两个迹象的非线性schr {Ö} dinger-langevin方程。我们明确地计算了高斯溶液在大时期的动力学,这是通过研究阶2的特定非线性微分方程获得的。然后,我们在某些规律性假设下给出了一般能量弱解决方案的渐近行为。进行一些数值模拟以证实理论结果。

We consider the nonlinear Schr{ö}dinger-Langevin equation for both signs of the logarithmic nonlinearity. We explicitly compute the dynamics of Gaussian solutions for large times, which is obtained through the study of a particular nonlinear differential equation of order 2. We then give the asymptotic behavior of general energy weak solutions under some regularity assumptions. Some numerical simulations are performed in order to corroborate the theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源