论文标题

拉丁高管和细胞自动机

Latin Hypercubes and Cellular Automata

论文作者

Gadouleau, Maximilien, Mariot, Luca

论文摘要

拉丁正方形和高管是统计,密码学和编码理论的多种应用的组合设计。在本文中,我们将基于双层蜂窝自动机(CA)的拉丁正方形的结构推广到尺寸的拉丁高管$ k> 2 $。特别是,我们证明了线性双臂CA(LBCA)产生的拉丁尺寸$ k> 2 $的拉丁高管由可逆的toeplitz矩阵的序列定义,具有部分重叠系数的序列,可以由特定类型的常规DE BRUIJN图描述,这些de bruijn图由确定性功能的支持。此外,我们得出了LBCA生成的$ K $维拉丁超级立方体的数量,这是通过计算此de bruijn图上的长度$ k-3 $的数量。

Latin squares and hypercubes are combinatorial designs with several applications in statistics, cryptography and coding theory. In this paper, we generalize a construction of Latin squares based on bipermutive cellular automata (CA) to the case of Latin hypercubes of dimension $k>2$. In particular, we prove that linear bipermutive CA (LBCA) yielding Latin hypercubes of dimension $k>2$ are defined by sequences of invertible Toeplitz matrices with partially overlapping coefficients, which can be described by a specific kind of regular de Bruijn graph induced by the support of the determinant function. Further, we derive the number of $k$-dimensional Latin hypercubes generated by LBCA by counting the number of paths of length $k-3$ on this de Bruijn graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源