论文标题

通过纠缠振荡检测拓扑

Detection of Topology via Entanglement Oscillations

论文作者

Tan, Chunyu, Saleur, Hubert, Haas, Stephan

论文摘要

我们介绍了基于纠缠熵的批量振荡和“纠缠差距”的定义的拓扑顺序的特征,这通常适用于纯和无序的量子系统。使用精确的对角度化和强障碍重归化组方法,我们证明了这种方法使结果与传统拓扑不变剂的使用一致,尤其是在存在异性脱节键障碍的情况下持续存在拓扑顺序的情况下。然后,纠缠差距用于分析具有交替键类型的量子系统的类别,从而使我们能够构建其拓扑相图。这些相图的有效性在已知溶液的主要键类型的情况下进行了验证。

We introduce a characterization of topological order based on bulk oscillations of the entanglement entropy and the definition of an `entanglement gap', showing that it is generally applicable to pure and disordered quantum systems. Using exact diagonalization and the strong disorder renormalization group method, we demonstrate that this approach gives results in agreement with the use of traditional topological invariants, especially in cases where topological order is known to persist in the presence of off-diagonal bond disorder. The entanglement gap is then used to analyze classes of quantum systems with alternating bond types, allowing us to construct their topological phase diagrams. The validity of these phase diagrams is verified in limiting cases of dominant bond types, where the solution is known.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源