论文标题

通过增强学习改善双皮亚机器人的输入输出线性化控制器

Improving Input-Output Linearizing Controllers for Bipedal Robots via Reinforcement Learning

论文作者

Castañeda, Fernando, Wulfman, Mathias, Agrawal, Ayush, Westenbroek, Tyler, Tomlin, Claire J., Sastry, S. Shankar, Sreenath, Koushil

论文摘要

输入输出线性化控制器的主要缺点是需要精确的动力学模型,而无法考虑输入约束。模型不确定性几乎在每个机器人应用中都是常见的,并且在每个现实世界系统中都存在输入饱和度。在本文中,我们通过使用强化学习技术来解决双方机器人控制的具体情况的这两个挑战。借助标准输入输出线性化控制器的结构,我们使用一个补充模型不确定性的增材学习项。此外,通过将限制添加到学习问题中,我们在存在输入限制时设法提高最终控制器的性能。我们证明了设计框架在五链平面行走机器人兔子上的不同级别不确定性的有效性。

The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints. Model uncertainty is common in almost every robotic application and input saturation is present in every real world system. In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques. Taking the structure of a standard input-output linearizing controller, we use an additive learned term that compensates for model uncertainty. Moreover, by adding constraints to the learning problem we manage to boost the performance of the final controller when input limits are present. We demonstrate the effectiveness of the designed framework for different levels of uncertainty on the five-link planar walking robot RABBIT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源