论文标题

双重分配的稳定性

Stability of doubly-intractable distributions

论文作者

Habeck, Michael, Rudolf, Daniel, Sprungk, Björn

论文摘要

每当可能包含标准化函数$ z $时,双重折扣的分布自然而然地作为贝叶斯推理框架中的后验分布。拥有两个这样的功能$ z $和$ \ widetilde z $,我们提供了总变化的估计,以及由此产生的后验概率度量的瓦斯坦距离。结果,这导致了本地Lipschitz的连续性W.R.T. $ z $。在随机函数$ \ widetilde z $的更一般框架中,我们在预期的总变化和预期的瓦斯坦距离上得出了界限。在两个代表性的蒙特卡洛恢复方案的设置中说明了估计值的适用性。

Doubly-intractable distributions appear naturally as posterior distributions in Bayesian inference frameworks whenever the likelihood contains a normalizing function $Z$. Having two such functions $Z$ and $\widetilde Z$ we provide estimates of the total variation and Wasserstein distance of the resulting posterior probability measures. As a consequence this leads to local Lipschitz continuity w.r.t. $Z$. In the more general framework of a random function $\widetilde Z$ we derive bounds on the expected total variation and expected Wasserstein distance. The applicability of the estimates is illustrated within the setting of two representative Monte Carlo recovery scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源