论文标题

异质性和几何形状对随机满足的证据复杂性的影响

The Impact of Heterogeneity and Geometry on the Proof Complexity of Random Satisfiability

论文作者

Bläsius, Thomas, Friedrich, Tobias, Göbel, Andreas, Levy, Jordi, Rothenberger, Ralf

论文摘要

满意度被认为是规范的NP完整问题,被用作理论中硬度降低的起点,而在实践中,启发式SAT求解算法可以非常有效地解决大型工业SAT实例。理论与实践之间的这种差异被认为是工业卫生案例固有特性的结果,使它们变得可行。在大多数现实世界的SAT实例,异质度分布和位置中,似乎普遍存在两种特征。为了了解这两种特性对SAT的影响,我们研究了随机K-SAT模型的证明复杂性,该模型允许控制异质性和位置。我们的发现表明,仅异质性并不能使SAT变得容易,因为异质的随机K-SAT实例具有超多种分辨率的大小。这意味着这些实例对现代卫星赛车的棘手性。另一方面,用潜在的几何形状对局部性进行建模会导致小不满意的副形,这可以在多项式时间内找到。 在高阶Voronoi图的复杂性中可以找到几何随机K-SAT结果的关键成分。作为附加的技术贡献,我们在非空的Voronoi区域的数量上显示了线性上限,该区域可容纳在非常一般的环境中随机位置的点。特别是,它涵盖了任意P-norms,更高的维度以及影响每个点影响区域的权重。这与最坏情况下的二次下限形成了鲜明对比。

Satisfiability is considered the canonical NP-complete problem and is used as a starting point for hardness reductions in theory, while in practice heuristic SAT solving algorithms can solve large-scale industrial SAT instances very efficiently. This disparity between theory and practice is believed to be a result of inherent properties of industrial SAT instances that make them tractable. Two characteristic properties seem to be prevalent in the majority of real-world SAT instances, heterogeneous degree distribution and locality. To understand the impact of these two properties on SAT, we study the proof complexity of random k-SAT models that allow to control heterogeneity and locality. Our findings show that heterogeneity alone does not make SAT easy as heterogeneous random k-SAT instances have superpolynomial resolution size. This implies intractability of these instances for modern SAT-solvers. On the other hand, modeling locality with an underlying geometry leads to small unsatisfiable subformulas, which can be found within polynomial time. A key ingredient for the result on geometric random k-SAT can be found in the complexity of higher-order Voronoi diagrams. As an additional technical contribution, we show a linear upper bound on the number of non-empty Voronoi regions, that holds for points with random positions in a very general setting. In particular, it covers arbitrary p-norms, higher dimensions, and weights affecting the area of influence of each point multiplicatively. This is in stark contrast to quadratic lower bounds for the worst case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源