论文标题
球形对称的爱因斯坦 - 赛车场系统的全球解决方案,在邦迪坐标中具有正宇宙常数
Global solutions to the spherically symmetric Einstein-scalar field system with a positive cosmological constant in Bondi coordinates
论文作者
论文摘要
我们考虑了一个特征性的初始值问题,并在邦迪坐标中为爱因斯坦(无质量的)标量场系统提供了带有正宇宙常数的爱因斯坦(无质量)标量场系统的初始数据。我们证明,对于小数据,该系统具有独特的全局经典解决方案,该解决方案在未来的因果关系上完成,并且在半径上多个衰减,在邦迪时间呈指数型,接近Sitter解决方案。
We consider a characteristic initial value problem, with initial data given on a future null cone, for the Einstein (massless) scalar field system with a positive cosmological constant, in Bondi coordinates. We prove that, for small data, this system has a unique global classical solution which is causally geodesically complete to the future and decays polynomially in radius and exponentially in Bondi time, approaching the de Sitter solution.