论文标题

神经形态的视觉宣传

Neuromorphic Eye-in-Hand Visual Servoing

论文作者

Muthusamy, Rajkumar, Ayyad, Abdulla, Halwani, Mohamad, Zweiri, Yahya, Gan, Dongming, Seneviratne, Lakmal

论文摘要

机器人视觉在工厂自动化对机器人应用程序中起着重要作用。但是,基于框架的相机的传统使用将限制在连续视觉反馈中,因为它们的采样率低和实时图像处理中的冗余数据,尤其是在高速任务的情况下。事件摄像机具有类似人类的视觉功能,例如以低潜伏期和较大动态范围的高时间分辨率($1μs$)观察动态变化。 在本文中,我们提出了一种使用事件摄像头的视觉宣传方法和一个开关控制策略,以探索,触及和掌握以实现操纵任务。我们设计了活跃事件的三个​​表面层,以直接处理相对运动的事件流。采用纯粹基于事件的方法来提取角特征,使用热图稳健地定位它们,并生成用于跟踪和对齐的虚拟功能。根据视觉反馈,控制机器人的运动,以使时间即将到来的事件特征收敛到时空空间中所需的事件。控制器根据操作的顺序切换其策略,以建立稳定的掌握。基于事件的视觉伺服(EVB)方法是使用手中配置中的商业机器人操纵器对实验验证的。实验证明了EBV方法在不需要重新调查的情况下跟踪和掌握不同形状的对象的有效性。

Robotic vision plays a major role in factory automation to service robot applications. However, the traditional use of frame-based camera sets a limitation on continuous visual feedback due to their low sampling rate and redundant data in real-time image processing, especially in the case of high-speed tasks. Event cameras give human-like vision capabilities such as observing the dynamic changes asynchronously at a high temporal resolution ($1μs$) with low latency and wide dynamic range. In this paper, we present a visual servoing method using an event camera and a switching control strategy to explore, reach and grasp to achieve a manipulation task. We devise three surface layers of active events to directly process stream of events from relative motion. A purely event based approach is adopted to extract corner features, localize them robustly using heat maps and generate virtual features for tracking and alignment. Based on the visual feedback, the motion of the robot is controlled to make the temporal upcoming event features converge to the desired event in spatio-temporal space. The controller switches its strategy based on the sequence of operation to establish a stable grasp. The event based visual servoing (EVBS) method is validated experimentally using a commercial robot manipulator in an eye-in-hand configuration. Experiments prove the effectiveness of the EBVS method to track and grasp objects of different shapes without the need for re-tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源